Characterization of Quasi-Coherent Modules that are Module Schemes
نویسندگان
چکیده
منابع مشابه
MULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملOn the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملOn quasi-catenary modules
We call a module M , quasi-catenary if for each pair of quasi-prime submodules K and L of M with K L all saturated chains of quasi-prime submodules of M from K to L have a common finite length. We show that any homomorphic image of a quasi-catenary module is quasi-catenary. We prove that if M is a module with following properties: (i) Every quasi-prime submodule of M has finite quasi-height;...
متن کاملOn quasi-baer modules
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2009
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927870802116547